15 research outputs found

    Low-Floor Tanner Codes via Hamming-Node or RSCC-Node Doping

    Get PDF
    We study the design of structured Tanner codes with low error-rate floors on the AWGN channel. The design technique involves the “doping” of standard LDPC (proto-)graphs, by which we mean Hamming or recursive systematic convolutional (RSC) code constraints are used together with single-parity-check (SPC) constraints to construct a code’s protograph. We show that the doping of a “good” graph with Hamming or RSC codes is a pragmatic approach that frequently results in a code with a good threshold and very low error-rate floor. We focus on low-rate Tanner codes, in part because the design of low-rate, low-floor LDPC codes is particularly difficult. Lastly, we perform a simple complexity analysis of our Tanner codes and examine the performance of lower-complexity, suboptimal Hamming-node decoders

    Ensemble Weight Enumerators for Protograph-Based Generalized LDPC Codes

    No full text
    Protograph-based LDPC codes have the advantages of a simple design (or search) procedure and highly structured encoders and decoders. These advantages have also been exploited in the design of protograph-based generalized LDPC (G-LDPC) codes. Recently, a technique for computing ensemble weight enumerators for protograph-based LDPC codes has been published. In the current paper, we extend those results to protograph-based G-LDPC codes. That is, we first derive ensemble weight enumerators for finite-length G-LDPC codes based on protographs, and then we consider the asymptotic case. The asymptotic results allow us to determine whether or not the typical minimum distance in the ensemble grows linearly with codeword length

    Ensemble enumerators for protograph-based generalized LDPC codes

    No full text
    Abstract — Protograph-based LDPC codes have the advantages of a simple design (or search) procedure and highly structured encoders and decoders. These advantages have also been exploited in the design of protograph-based generalized LDPC (G-LDPC) codes. Recently, a technique for computing ensemble weight enumerators and stopping set enumerators for protograph-based LDPC codes has been published. In the current paper, we extend those results to protograph-based G-LDPC codes. That is, we first derive ensemble weight and stopping set enumerators for finite-length G-LDPC codes based on protographs, and then we consider the asymptotic case. In the weight enumerator case, the asymptotic results allow us to determine whether or not the typical minimum distance in the ensemble grows linearly with codeword length. In the stopping set enumerator case, the asymptotic results allows us to determine whether or not the typical smallest stopping set size grows linearly with codeword length. I
    corecore